Efficiently train models with large sequence lengths using Amazon SageMaker model parallel
Large language models (LLMs) have witnessed an unprecedented surge in popularity, with customers increasingly using publicly available models such as Llama, Stable Diffusion, and Mistral. Across diverse industries—including healthcare, finance, and marketing—organizations are now engaged in pre-training and fine-tuning these increasingly larger LLMs, which often boast billions of parameters and larger input sequence length. Although …